Almost all triple systems with independent neighborhoods are semi-bipartite

نویسندگان

  • József Balogh
  • Dhruv Mubayi
چکیده

The neighborhood of a pair of vertices u, v in a triple system is the set of vertices w such that uvw is an edge. A triple system H is semi-bipartite if its vertex set contains a vertex subset X such that every edge of H intersects X in exactly two points. It is easy to see that if H is semi-bipartite, then the neighborhood of every pair of vertices in H is an independent set. We show a partial converse of this statement by proving that almost all triple systems with vertex sets [n] and independent neighborhoods are semi-bipartite. Our result can be viewed as an extension of the Erdős-Kleitman-Rothschild theorem to triple systems. The proof uses the Frankl-Rödl hypergraph regularity lemma, and stability theorems. Similar results have recently been proved for hypergraphs with various other local constraints.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME ERGODIC PROPERTIES OF HYPER MV {ALGEBRA DYNAMICAL SYSTEMS

This paper provides a review on major ergodic features of semi-independent hyper MV {algebra dynamical systems. Theorems are presentedto make contribution to calculate the entropy. Particularly, it is proved that thetotal entropy of those semi-independent hyper MV {algebra dynamical systemsthat have a generator can be calculated with respect to their generator ratherthan considering all the par...

متن کامل

A converse Lyapunov theorem for almost sure stabilizability

We prove a converse Lyapunov theorem for almost sure stabilizability of controlled diffusions: given a stochastic system a.s. open loop stabilizable at the origin, we construct a lower semicontinuous positive definite function whose level sets form a local basis of viable neighborhoods of the equilibrium. This result provides, with the direct Lyapunov theorem proved in a companion paper, a comp...

متن کامل

Applying Semi-Markov Models for forecasting the Triple Dimensions of Next Earthquake Occurrences: with Case Study in Iran Area

  In this paper Semi-Markov models are used to forecast the triple dimensions of next earthquake occurrences. Each earthquake can be investigated in three dimensions including temporal, spatial and magnitude. Semi-Markov models can be used for earthquake forecasting in each arbitrary area and each area can be divided into several zones. In Semi-Markov models each zone can be considered as a sta...

متن کامل

Some new constructions of imprimitive cometric association schemes

In a recent paper [9], the authors introduced the extended Q-bipartite double of an almost dual bipartite cometric association scheme. Since the association schemes arising from linked systems of symmetric designs are almost dual bipartite, this gives rise to a new infinite family of 4-class cometric schemes which are both Q-bipartite and Q-antipodal. These schemes, the schemes arising from lin...

متن کامل

Almost all cancellative triple systems are tripartite

A triple system is cancellative if no three of its distinct edges satisfy A ∪ B = A ∪ C. It is tripartite if it has a vertex partition into three parts such that every edge has exactly one point in each part. It is easy to see that every tripartite triple system is cancellative. We prove that almost all cancellative triple systems with vertex set [n] are tripartite. This sharpens a theorem of N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2011